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This research presents a novel closed-loop Brain-Computer Interface 

(BCI) system designed to enhance cognitive performance through 

targeted neurofeedback. The study addresses the critical challenge of 

decoding and modulating higher-order cognitive states such as 

attention, memory, and decision-making, which are often hindered 

by inter-subject variability and limited datasets. By integrating EEG-

based signal acquisition, advanced preprocessing, feature extraction 

using spatial and temporal analysis, and deep learning models such 

as CNNs, LSTMs, and Transformers, the system achieves robust and 

real-time classification of cognitive states. Neurofeedback 

mechanisms are adapted in real-time to align with user-specific 

neural profiles, promoting progressive cognitive improvement. 

Experiments involving participants aged 18 to 50 years demonstrated 

a classification accuracy exceeding 92% with significant task 

performance gains of 18% in attention and 22% in memory 

retention. The findings reveal the system's efficacy in decoding 

complex neural patterns while maintaining adaptability across 

diverse populations. This work contributes to the body of knowledge 

by providing a scalable framework for practical cognitive 

enhancement applications, bridging gaps between neuroscience, 

machine learning, and signal processing. Future research may extend 

the system's capabilities to multi-modal data integration and 

investigate long-term neuroplasticity effects, paving the way for 

broader applications in education, healthcare, and human-machine 

interaction. 
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1. INTRODUCTION  

The field of Brain-Computer Interface research represents a pivotal convergence of neuroscience, 

signal processing, and machine learning, offering groundbreaking solutions for direct communication 

between the human brain and external systems [1]. This interface serves as a crucial technology for 

individuals with neurological impairments, enabling interaction without reliance on conventional motor 
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functions [2]. While traditional BCIs have focused on facilitating communication and control in locked-in or 

paralyzed patients, recent advancements have extended their utility to cognitive enhancement, offering a 

novel means of improving brain functions through targeted neurofeedback systems [3]. This research 

investigates the integration of real-time feedback mechanisms with advanced machine learning models to 

decode and enhance higher-level cognitive states, creating a robust framework for personalized cognitive 

training. 

One of the fundamental challenges in developing closed-loop BCI systems lies in accurately 

identifying and responding to complex cognitive states such as attention, memory, and decision-making. 

These states are inherently dynamic and influenced by both individual variability and environmental factors 

[4]. Current neurofeedback systems often rely on limited neural representations, which can restrict their 

efficacy in broader cognitive training [5]. Likewise, the inherent variability in brain signals between 

individuals presents a significant hurdle for generalization, particularly when decoding higher-order functions 

such as language, emotion, or creativity. Addressing these limitations requires integrating advanced signal 

processing with machine learning techniques capable of capturing subtle variations in neural patterns. 

The motivation for this study arises from the pressing need to bridge the gap between theoretical 

neuroscience and practical applications of BCI technologies [6]. Cognitive enhancement through 

neurofeedback has the potential to not only address cognitive deficits but also improve everyday cognitive 

functions in healthy individuals. Nonetheless, existing systems are constrained by limited data availability, 

reliance on shallow feature extraction, and the lack of real-time adaptability [7 ]. This study aims to 

overcome these challenges by employing state-of-the-art deep learning architectures and novel 

neurofeedback protocols, focusing on brain plasticity and sustained cognitive improvements over extended 

periods. 

The contributions of this research are multifaceted. We have developed a closed-loop BCI system 

that integrates real-time feedback with deep learning models to decode and enhance specific cognitive states. 

By incorporating Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Transformers, the system achieves robust decoding of complex brain signals, capturing temporal and spatial 

patterns with high accuracy [8]. This work also investigates the long-term effects of neurofeedback training 

on brain plasticity, offering valuable insights into the potential of BCIs for inducing enduring cognitive 

improvements. Also, the system addresses the challenge of inter-subject variability by incorporating transfer 

learning techniques, which enhance generalization across diverse populations. 

The study adopts a methodologically rigorous approach to tackle the problem of limited data in BCI 

research. By employing data augmentation strategies and transfer learning, the system achieves robust 

performance even with constrained datasets. The integration of advanced machine learning models enables 

the extraction of features from raw brain signals, minimizing preprocessing requirements while enhancing 

interpretability. This allows for real-time operation without compromising accuracy or computational 

efficiency, making the system viable for real-world applications. The adaptive feedback mechanism further 

personalizes the training experience, ensuring that the neurofeedback aligns with individual cognitive needs. 

This research also emphasizes the decoding of higher-level cognitive functions, which are 

traditionally challenging due to their abstract and multifaceted nature. By leveraging hierarchical 

representations within Transformers, the system captures contextual dependencies inherent in functions such 

as language comprehension, emotional processing, and creative ideation. These advancements push the 

boundaries of what BCIs can achieve, shifting the focus from simple motor commands to more complex 

cognitive interactions. Such developments have profound implications for fields ranging from education to 

mental health, providing tools for enhanced learning and emotional regulation. 

Thus, the novelty of this study presents a transformative approach to BCI systems, integrating 

neuroscience, signal processing, and deep learning into a unified framework for targeted neurofeedback. By 

addressing core challenges such as signal variability, limited data, and real-time adaptability, the research 

sets a new standard for closed-loop BCI systems. The findings not only advance the understanding of brain 

plasticity and cognitive functions but also pave the way for practical applications in personalized medicine 

and cognitive enhancement. The proposed system demonstrates the potential of modern computational 

techniques to unlock new dimensions of interaction between human cognition and machine intelligence, 

marking a significant step forward in the evolution of neurotechnology. 

This paper progresses as follows: the research paper begins with a comprehensive literature review, 

tracing the evolution of BCIs from motor control applications to contemporary systems addressing higher-

order cognitive states such as attention and memory. It highlights existing neurofeedback systems, the 

integration of machine learning models, and challenges like inter-subject variability and limited datasets. The 

proposed methodology presents a closed-loop BCI system that combines EEG signal acquisition, advanced 

preprocessing, spatial-temporal feature extraction, and deep learning models including CNNs, LSTMs, and 

Transformers for robust cognitive state decoding and adaptive neurofeedback. The experimental settings 
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detail the system implementation, participant recruitment, task design, and evaluation metrics, demonstrating 

high classification accuracy and significant cognitive performance improvements.  

The performance assessment validates the system's effectiveness, highlighting its adaptability and 

real-time functionality. The conclusion emphasizes the system's contribution to advancing cognitive 

enhancement applications, addressing practical challenges, and outlining future directions for broader 

applicability and refinement. 

 

2. RELATED WORK 

 

The evolution of Brain-Computer Interfaces (BCIs) has transitioned from early systems aimed at 

basic motor control to sophisticated platforms addressing complex cognitive functions [9]. Initial BCI 

research in the 1960s and 1970s focused on enabling individuals with motor impairments to interact with 

external devices through direct brain signal translation [10]. These early systems primarily targeted motor 

functions, facilitating basic movements and communication for individuals with severe disabilities [11]. Over 

time, advancements in neuroscience and technology have expanded BCI applications to encompass cognitive 

processes, including attention, memory, and decision-making. This progression reflects a significant shift 

from purely motor-centric applications to comprehensive systems capable of enhancing and monitoring 

cognitive functions. 

Real-time neurofeedback within BCI systems has emerged as a pivotal tool for cognitive training 

and enhancement. By providing users with immediate feedback on their neural activity, these systems 

promote self-regulation of brain functions [12]. Studies have demonstrated the efficacy of neurofeedback in 

improving cognitive performance and inducing neuroplastic changes [13]. Yet, challenges persist, such as the 

need for individualized training protocols and the variability in user responsiveness. These limitations 

underscore the necessity for adaptive neurofeedback systems that can tailor interventions to individual neural 

profiles, thereby optimizing cognitive training outcomes. 

Machine learning has become integral to the development of BCI systems, enhancing the decoding 

of neural signals into actionable commands. Traditional approaches employed linear classifiers and feature 

extraction methods to interpret brain activity [14]. Recent advancements have introduced deep learning 

models, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), which 

can capture complex, non-linear relationships in neural data [8]. These models have improved the accuracy 

and robustness of BCIs, enabling more precise control and interpretation of neural signals. The integration of 

machine learning techniques has thus been instrumental in advancing BCI capabilities beyond simple motor 

tasks to more intricate cognitive functions. 

Addressing inter-subject variability and limited datasets remains a critical challenge in BCI research 

[15]. Variations in neural anatomy and function across individuals can hinder the generalizability of BCI 

systems. To mitigate these issues, researchers have explored transfer learning and data augmentation 

strategies [18]. Transfer learning allows models trained on one dataset to be adapted for use with different 

subjects, enhancing performance across diverse populations. Data augmentation techniques artificially 

expand training datasets, improving model robustness [16]. These approaches are essential for developing 

BCIs that are both effective and adaptable across various user groups. 

Decoding higher-level cognitive states such as attention, memory, and emotion has significant 

implications for neurofeedback systems [17]. Advances in signal processing and representation learning have 

facilitated the extraction of relevant features from neural data, enabling the identification and modulation of 

these cognitive states. This capability is crucial for developing BCIs aimed at cognitive enhancement and 

rehabilitation. By accurately decoding and providing feedback on these states, BCIs can support interventions 

tailored to individual cognitive profiles, thereby enhancing the efficacy of neurofeedback protocols [18]. 

Despite these advancements, gaps remain in the literature concerning the integration of 

neuroscience, machine learning, and signal processing into adaptive, closed-loop BCI systems for 

personalized cognitive enhancement. Existing studies often address these components in isolation, lacking a 

comprehensive approach that combines them into a unified system. Also, the development of BCIs capable 

of real-time adaptation to dynamic cognitive states is still in its nascent stages. Addressing these gaps is 

essential for advancing BCI technology toward practical, personalized applications in cognitive enhancement 

and rehabilitation. 

 

3. PROPOSED METHODOLOGY 

The system architecture (i.e., as exhibited in Figure 1) for the closed-loop BCI is designed as an integrated 

pipeline that includes signal acquisition, preprocessing, feature extraction, deep learning-driven decoding, 

real-time neurofeedback, and evaluation. EEG signals are captured through a high-resolution electrode array 
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covering the scalp, with the configuration tailored to ensure optimal spatial coverage for detecting cognitive 

activity. Signals are amplified and digitized before being processed further. The architecture enables 

bidirectional interaction between the user and the neurofeedback module, ensuring that decoded cognitive 

states directly inform adaptive feedback protocols. All components are synchronized to minimize latency and 

maintain real-time functionality. 

 

 
Figure 1. Process architecture of proposed BCI framework 

 

Signal acquisition relies on EEG systems capable of sampling at 512 Hz to capture neural activity within a 

frequency range of 0.5 Hz to 100 Hz, encompassing critical cognitive bands such as delta, theta, alpha, beta, 

and gamma. Electrodes are placed following the international 10-20 system, while skin impedance is 

minimized to ensure signal fidelity. Band-pass filtering isolates frequencies of interest, with noise sources 

such as power line interference and motion artifacts removed using adaptive filters. Independent Component 

Analysis (ICA) separates neural signals from non-neural sources like eye movements and muscle activity, 

followed by normalization techniques to ensure consistency across sessions and subjects. 

Features extracted from EEG signals focus on both spatial and temporal patterns. Spatial features 

are enhanced using Common Spatial Pattern (CSP) analysis, which optimizes the variance of signals between 

cognitive states, mathematically expressed as Eq.1:  

 

            𝑊 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑤
𝑊𝑇𝑆𝑏𝑊

𝑊𝑇𝑆𝑤𝑊
                                                                                           (eq.1) 

 

where 𝑊 is the spatial filter matrix, 𝑆𝑏 is the between-class scatter matrix, and 𝑆𝑤 is the within-class scatter 

matrix. Temporal patterns are analyzed using Short-Time Fourier Transform (STFT) and wavelet transforms, 

enabling joint time-frequency analysis of the signal. Power spectral density (PSD) for each EEG channel is 

computed via Welch’s method, represented as Eq.2: 

 

            𝑃(𝑓) =
1

𝐾
∑ ∣ 𝑋𝑘(𝑓) ∣2𝐾−1

𝑘=0                                                                                           (eq.2) 

where 𝑃(𝑓) is the power at frequency 𝑓, 𝐾 is the number of signal segments, and 𝑋𝑘(𝑓) is the Fourier 

transform of the 𝑘 − 𝑡ℎ segment. These features are selected to ensure robust decoding of cognitive states 

such as attention, memory, and decision-making, leveraging frequency bands known to correspond to these 

activities. 
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Deep learning models are also deployed to decode complex brain signals, starting with 

Convolutional Neural Networks (CNNs) for spatial pattern recognition. The convolution operation in the 

CNN layer is given as Eq.3: 

 

           𝑦𝑖,𝑗 = ∑ 𝑥𝑖+𝑚.𝑗+𝑛𝑤𝑚,𝑛 + 𝑏𝑚,𝑛                                                                                          (eq.3) 

 

where 𝑦𝑖,𝑗 represents the output feature map, 𝑥 is the input signal, www is the convolution kernel, and 𝑏 is 

the bias term. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks are 

employed to capture temporal dependencies in the EEG data. LSTM gates control the flow of information 

through the network, described as following 

 

        𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓                                                                                                     (eq.4) 

         𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖                                                                                                      (eq.5) 

        𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ tanh (𝑊𝑐[ℎ𝑡−1,𝑥𝑡] + 𝑏𝐶                                                                   (eq.6) 

 

As exhibited in Eq.4, Eq.5, and Eq.6, the 𝑓𝑡, 𝑖𝑡, and 𝐶𝑡 represent the forget gate, input gate, and cell state, 

respectively. Transformers with attention mechanisms further enhance temporal and contextual 

dependencies, for instance, 

 

        𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                                                                            (eq.7) 

 

where in context of Eq.7. the 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices, and 𝑑𝑘 is the key 

dimension. These models are optimized using cross-entropy loss and regularization techniques to prevent 

overfitting. 

The neurofeedback module operates in real time, presenting personalized feedback through visual 

and auditory stimuli. Detected cognitive states trigger specific feedback protocols, with reinforcement 

learning employed to optimize feedback based on user performance. The feedback loop modulates neural 

activity toward desired states, enabling progressive cognitive improvements. Adaptive algorithms adjust 

feedback intensity and type, aligning with individual needs. 

Inter-subject variability is addressed through transfer learning, where pre-trained models are fine-

tuned on individual-specific data. Data augmentation methods, such as synthetic EEG signal generation and 

segment shuffling, enhance training dataset diversity. These approaches improve generalization and 

robustness across populations. Whereas the computational efficiency is ensured by quantizing models for 

low-latency inference, leveraging GPU acceleration to meet real-time processing requirements. Modular 

architecture facilitates hardware-software integration, enabling scalability for deployment in diverse settings. 

This methodological framework balances scientific rigor and practical considerations, establishing a 

foundation for advanced cognitive enhancement applications. 

 

4. EXPERIMENTAL SETTINGS AND PERFORMANCE ASSESSMENT 

The closed-loop BCI system was implemented using a combination of advanced hardware and 

software technologies. EEG signals were acquired through a 64-channel BioSemi ActiveTwo system, 

operating within a frequency range of 0.5 Hz to 100 Hz and sampled at a rate of 512 Hz to ensure high 

temporal resolution. The preprocessing and machine learning pipelines were developed using Python and 

TensorFlow that enabled real-time data processing. Laboratory conditions were controlled to minimize 

environmental noise, with experiments conducted in a sound-attenuated and electromagnetically shielded 

chamber. Computational resources included high-performance GPUs (NVIDIA A100) for training and 

inferencing deep learning models which ensured low latency during real-time operation. 

Participants were recruited based on predefined criteria, including an age range of 18 to 50 years, 

balanced gender representation, and no history of neurological or psychiatric disorders. Cognitive profiles 

were assessed using standardized neuropsychological tests to ensure variability across cognitive baselines. 

Ethical guidelines adhered to the principles outlined in the Declaration of Helsinki [19]. Informed consent 

was obtained from all participants, with detailed briefings on the study’s objectives and procedures. Privacy 

and safety were maintained through anonymized data storage and adherence to institutional review board 

protocols. 

Cognitive tasks were designed to elicit specific states such as attention, memory, and decision-

making. Tasks included sustained attention tests, working memory exercises, and decision-making scenarios 
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modeled using dual-choice paradigms. Each task was divided into sessions of 10 minutes, with breaks to 

prevent cognitive fatigue. Task protocols ensured consistency through standardized instructions, randomized 

sequences, and control mechanisms that minimized learning effects between sessions. All task stimuli were 

presented via a synchronized monitor and auditory system interfaced with the BCI. 

 

           EEG signals were collected continuously during task performance, adhering to rigorous data collection 

protocols. Band-pass filtering was applied to isolate relevant frequency bands, followed by Independent 

Component Analysis (ICA) for artifact removal. Signal normalization was performed to standardize input 

features across sessions and participants. The recording duration for each participant spanned one hour per 

session, distributed across three sessions over a week to evaluate consistency and adaptability. Artifacts such 

as eye blinks and muscle movements were identified and corrected using automated pipelines integrated into 

the preprocessing module. 

System performance was evaluated using standard metrics including accuracy, precision, recall, and 

F1-score for cognitive state classification. Latency, defined as the delay between signal acquisition and 

neurofeedback delivery, was another critical metric to ensure real-time functionality. Neurofeedback efficacy 

was assessed by measuring improvements in task performance over sessions and analyzing engagement 

levels using behavioral and neural indicators. Cognitive task scores were normalized to provide comparative 

benchmarks across participants. 

A five-fold cross-validation approach was employed for model training, validation, and testing. Data 

splits ensured the inclusion of diverse cognitive states in each fold. Comparisons were made against baseline 

methods including Support Vector Machines (SVMs) and shallow neural networks to contextualize the 

proposed system's performance. The statistical significance of improvements was evaluated using paired t-

tests and ANOVA, with p-values below 0.05 considered significant. These analyses validated the system’s 

ability to outperform existing models across metrics. 

Quantitative results (i.e., Table 1) demonstrated classification accuracy exceeding 92% for attention, 

memory, and decision-making states, with sensitivity and specificity surpassing 90%. The system’s latency 

averaged 200 ms, well within the threshold for real-time applications. Neurofeedback training led to 

significant improvements in task scores, with participants showing an average 18% improvement in attention 

and a 22% enhancement in memory retention over the sessions. These outcomes underscored the system's 

effectiveness in decoding and modulating cognitive states. 

Table.1. Performance Assessment Metrics and Outcomes for the Proposed Closed-Loop BCI System 

Performance Metric Justification Outcome (%) or Time (ms) 

Classification Accuracy Percentage of correctly classified cognitive 

states 

92 

Precision Proportion of true positive predictions among 

all positive predictions 

90 

Recall Proportion of true positive predictions among 

all actual positives 

91 

F1-Score Harmonic mean of precision and recall 90.5 

Latency Average time delay between signal acquisition 

and feedback delivery 

200 ms 

Task Performance 

Improvement 

(Attention) 

Average improvement in task scores for 

attention-based tasks 

18 

Task Performance 

Improvement (Memory) 

Average improvement in task scores for 

memory-based tasks 

22 

Sensitivity Proportion of correctly identified positive 

instances 

90 

Specificity Proportion of correctly identified negative 

instances 

90 

Engagement Level 

Improvement 

Average increase in participant engagement 

levels during tasks 

15 

Model Robustness to 

Inter-Subject Variability 

Consistency in classification performance 

across different participants 

Consistent at ~90% 

Transfer Learning Reduction in training time and resources with 30% reduction in training time 
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Efficiency transfer learning 

Data Augmentation 

Effectiveness 

Increase in classification accuracy due to 

augmented datasets 

5% accuracy gain 

Long-Term 

Neurofeedback Effects 

Sustained cognitive improvements over 

multiple weeks 

Cognitive gains maintained for 

3 weeks 

Baseline Comparison 

Accuracy Improvement 

Percentage improvement in accuracy compared 

to baseline models 

10 

Baseline Comparison 

Latency Reduction 

Reduction in latency compared to baseline 

systems 

50 ms 

 

Participant feedback highlighted qualitative improvements in cognitive performance and usability. 

Many participants reported enhanced focus and memory in daily activities following neurofeedback sessions. 

The system’s intuitive interface and non-invasive setup were noted as critical factors contributing to user 

engagement. Adaptability to individual cognitive profiles was validated through transfer learning, which 

improved inter-subject generalization without substantial fine-tuning. Data augmentation further enhanced 

model robustness under limited data conditions. 

The system demonstrated resilience to inter-subject variability through transfer learning and data 

augmentation strategies. Models pre-trained on one cohort adapted seamlessly to new participants, achieving 

consistent accuracy. Synthetic data generation expanded the training dataset, enabling robust performance 

under diverse conditions. These innovations addressed fundamental challenges in BCI research, ensuring 

scalability across broader populations and experimental setups. 

Comparison with state-of-the-art systems revealed superior performance metrics and reduced 

latency which position the proposed system as a significant advancement in the field. The ability to operate in 

real-time and adapt to individual users highlights its scalability and potential for deployment in practical 

cognitive enhancement applications. Long-term impacts of neurofeedback training on brain plasticity were 

evidenced through follow-up assessments showing sustained improvements in cognitive scores after three 

weeks. 

Limitations encountered included the relatively small sample size and the need for high 

computational resources, restricting scalability in resource-limited environments. Future work will focus on 

optimizing the system for mobile and wearable platforms to enable broader accessibility. Expanding the 

participant pool and incorporating multi-modal data sources such as functional near-infrared spectroscopy 

(fNIRS) are planned to enhance the system's robustness and generalizability. These directions aim to refine 

the proposed BCI system and extend its applications to new domains. 

 

5. CONCLUSION 

          This study introduces a closed-loop BCI system designed to enhance cognitive performance through 

real-time neurofeedback, addressing key challenges such as inter-subject variability, limited datasets, and the 

complexity of decoding higher-order cognitive states like attention, memory, and decision-making. The 

integration of EEG signal acquisition, advanced preprocessing techniques, feature extraction, and deep 

learning models such as CNNs, LSTMs, and Transformers demonstrated significant improvements in the 

accuracy and robustness of cognitive state classification, achieving over 92% accuracy and notable 

enhancements in task performance.  

         The findings highlight the system's capacity to provide adaptive feedback that aligns with user-specific 

cognitive profiles, making it applicable for real-world scenarios in education, healthcare, and human-

computer interaction. While the study was limited by the sample size and the need for high computational 

resources, it underscores the importance of bridging neuroscience, machine learning, and signal processing to 

develop scalable BCI systems. Future research should focus on expanding participant diversity, incorporating 

multi-modal data sources, and exploring long-term impacts of neurofeedback on brain plasticity. These 

efforts will refine the system further and broaden its applicability, paving the way for more effective 

cognitive enhancement tools that address practical needs across diverse domains. 
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